Zum Inhalt
Fakultät für Informatik

Andreas Roth

Foto von Andreas Roth © Lutz Kampert

Forschungsthemen

  • Wissensgewinnung aus graph-strukturierten Daten
  • Expressivität von tiefen Graph Neuronalen Netzen
  • Wissenstransfer zur Kompression von Modellen

Ausgewählte Publikationen

2024

  • A. Roth, F. Bause, N. M. Kriege, and T. Liebig, “Preventing Representational Rank Collapse in MPNNs by Splitting the Computational Graph,” in Learning on Graphs Conference, 2024. PMLR. (LoG 2024)

2023

  • A. Roth and T. Liebig, “Rank Collapse Causes Over-Smoothing and Over-Correlation in Graph Neural Networks,” in Learning on Graphs Conference (pp. 35-1), 2023. PMLR. (LoG 2023)
  • A. Roth and T. Liebig, “Distilling Influences to Mitigate Prediction Churn in Graph Neural Networks,” in Asian Conference on Machine Learning (pp. 1151-1166), 2023. PMLR. (ACML 2023)

2022

  • A. Roth and T. Liebig, “Transforming PageRank into an Infinite-Depth Graph Neural Network,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022. (ECML PKDD 2022, Best Paper Award)

2021

  • A. Roth, K. Wüstefeld, and F. Weichert. “A Data-Centric Augmentation Approach for Disturbed Sensor Image Segmentation,” in Journal of Imaging, vol. 7, iss. 10, 2021. (Journal of Imaging)

Auszeichnungen

  • Best Paper Award, ECML PKDD 2022.
  • Top Reviewer, NeurIPS 2024.

Andere Wissenschaftliche Aktivitäten